

MICROPHYSICS AND ELECTRIFICATION OF HAIL PRODUCING TROPICAL STORMS DURING SOS-CHUVA PROJECT

Camila Lopes, B.S.¹ Rachel Albrecht, PhD Professor¹

¹ Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, São Paulo, Brazil

ABSTRACT

Two hail producing storms that occurred in 2017 were analyzed using weather radars, a lightning detection network and a hailpad network deployed during SOS-CHUVA Project in the Metropolitan Region of Campinas. The most intense case according to radar and hailpads occurred in 2017-11-15, but showed low electrical activity during its life cycle, while the 2017-03-14 case showed higher lightning rates with less intensified large ice particles cores. Two relationships could be determined: an increase in lightning rate before hailfall, consistent with severe storms observations, and an increase in lightning rate after hailfall. These findings will be further related to an Dual-Doppler analysis of the kinematics of the events.

ACKNOWLEDGMENTS

This work is part of a Masters Project financed by São Paulo Research Foundation (FAPESP), process 2017/06075-3. We would like to thank STORM-T/IAG-USP laboratory, ELAT-INPE and DSA/CPTEC-INPE for the data provision and preprocessing.

CONTACT

Camila Lopes Department of Atmospheric Sciences Institute of Astronomy, Geophysics and Atmospheric Sciences - IAG-USP Email: camila.lopes@iag.usp.br

- specially in Brazil
- network

Objective: Describe hail producing storms occurred during SOS-CHUVA Project, classifying its intensity using hailpad measurements and relating main storm features with electrical activity.

Date of the Ever

2017-03-14

2017-11-15

Table 1. Selected case

FCTH

S-Band

Dopplei

Dual Polariza

Hydrometeor ide and classification

Table 2. Radars features and applications

- LF HF frequency band

 $E_t = 4,58e^{-6} \sum n_i d_i^4 [J m^{-2}]$

TORRO (Webb et al., 1986) and ANELFA (Dessens et al., 2007) scales indicate hailstorm intensity comparing typical or maximum diameter of hail with the kinetic energy (E_t) of the hailpad, defined by (Mezeix et al., 1981):

INTRODUCTION

 Hailstorms are frequent and well known in mid-latitudes, specially in the United States; In the Tropics, these storms are rare and less intense

• In South America: severe hail reports in subtropical Argentina and south Brazil (Martins et al., 2017) but few scientific studies about these events exist,

Study area: Southeastern Brazil - Metropolitan Region of Campinas, São Paulo (~ 22.9° S, 47° W)

SOS-CHUVA Project: developed research in thunderstorm nowcasting specifically in the study area during the summers of 2016-2017 an 2017-2018, integrating several meteorological databases including weather radars, meteorological stations, lightning detection networks and a hail detection

DATA AND METHODS

it	Description	Affected Regions
	Heavy rains and hailfall in the division between Campinas and Indaiatuba and in Jacareí	Campinas, Indaiatuba, Jacareí
	Favorable thermodynamical conditions led to the formation of convective systems concentrated in the center of São Paulo state	Indaiatuba, Bebedouro
es.	Source: https://topicssoschuva.blogspot.com.br/	

	São Roque		
	S-Band		
-	Doppler		
ation	Single Polarization		
ntification ation	Storm tracking (ForTraCC-Radar)		

Figure 1. FCTH (orange) and São Roque (blue) radars locations and 250-km range.

Lightning data: BrasilDAT Network (*Naccarato et al., 2014*)

 Differentiates intracloud (IC) and cloud-to-ground (CG) lightning Detects electromagnetic pulses (strokes) using time of arrival technique • Detection efficiency of 60-70% (IC) and 95% (CG) (Dr. Kleber Naccarato, ELAT-CCST-INPE, personal communication, 2018)

Figure 2. Hailpad network with 80-km range of XPOL Radar (left) and a hailpad installed in Indaiatuba (right).

Figure 4. Hailstorms intensity according to TORRO (a) and ANELFA (b) scales.

RESULTS

Distributions of All Measures

Measured by HAG_1 HAG_2 HAG_3

Figure 3. Hail diameter distributions for each hailpad.

Figure 7. Temporal evolution of maximum reflectivity (a), storm size (b) and cloud-to-ground (CG) and intracloud (IC) lightning rate (c). The dashed lines indicate hailfall occurrence.

Event	Duration (Hours)	Max Reflectivity (dBZ)	Max Area (km²)	Mean Hail (mm)	Max Hail (mm)	Total Lightning (Strokes)		Max Lightning Rate (Strokes/min)	
						IC	CG	IC	CG
17-03-14	6,8	69,7	2312	7,8	11,8	24074	8864	215	74
17-11-15	2,2	67,6	253	10,3	22,4	97	42	9	5

Table 3. Summary of physical and electrical features of the selected cases.

CONCLUSIONS

Two distinct cases of hail producing storms were presented:

- In 2017-03-14, a long-lasting convective system passed through the entire Metropolitan Region of Campinas, with elevated electrical activity and generating low-intensity hailfall at least twice in the region In 2017-11-15, a smaller system affected a few cities in the region, with low electrical activity and significant hailfall
- It was possible to identify peaks of lightning rate before hailfall occurrence in two out of three situations (2017-03-14 in Indaiatuba and 2017-11-15).
- At the approximate time when hailfall occurred, radar profiles show accentuated cores of large ice particles, including hail and graupel. The kinematic of these events will be further investigated using Dual-Doppler analysis.

Figure 8. Cross section of reflectivity, hydrometeor classification and
liquid and ice water mass for the 2017-03-14 case in Cosmópolis (a)
and Indaiatuba (b) and the 2017-11-15 case (c). The squares represent
the location of the hailpads.

REFERENCES

- Dessens, J., Berthet, C., & Sanchez, J. L. (2007). A point hailfall classification based on hailpad measurements: The ANELFA scale. Atmospheric Research, 83(2–4 SPEC. ISS.), 132–139.
- Martins, J. A., Brand, V. S., Capucim, M. N., Felix, R. R., Martins, L. D., Freitas, E. D., et al. (2017). Climatology of destructive hailstorms in Brazil. Atmospheric Research, 184, 126–138.
- Mezeix, J. F., Doras, N., Mezeix, J. F., & Doras, N. (1981). Various Kinetic Energy Characteristics of Hailpatterns in the Grossversuch IV Experiment. Journal of Applied Meteorology, 20(4), 377–385.
- Naccarato, K. P., Pinto, O., Sloop, C. D., Heckman, S., & Liu, C. (2014). Evaluation of BrasilDAT relative detection efficiency based on LIS observations and a numeric model. In 2014 International Conference on Lightning Protection (ICLP). Shanghai.
- Webb, J. D. C., Elsom, D. M., & Meaden, G. T. (1986). The TORRO hailstorm intensity scale. J Meteorol, 11, 337–339.